Slow-rotating black holes with potential in dynamical Chern-Simons modified gravitational theory

نویسندگان

چکیده

The Chern-Simons amended gravity theory appears as a low-energy effective of string theory. includes an anomaly-cancelation correction to the Einstein-Hilbert action. expression consists product $\varphi R \tilde $ Pontryagin density $R with scalar field $\varphi$, where latter is considered background (dynamical construction or non-dynamical construction). Many different solutions Einstein's general relativity continue be valid in theories. Kerr metric is, however, exceptional case that raised search for rotating black hole solutions. We generalize solution presented Phys. Rev. D \textbf{77}, 064007 (2008) by allowing potential $V$ have non-vanishing value and we discuss three cases potential, $V=\mathrm{const.}$, $V\propto \varphi$, \varphi^2$ cases. present study presents, first time, novel prescribing holes frame dynamical formulation gravity, include previously derived derive slow-rotation limit, write parameter expansion $\varepsilon$. These are axisymmetric stationary they give distortion dipole field. Moreover, investigate rectification behaves inverse fourth order radial distance from center when \varphi$. This suggests any meaningful limits weak-field experiments could passed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How do black holes spin in Chern-Simons modified gravity?

No Kerr-like exact solution has yet been found in Chern-Simons modified gravity. Intrigued by this absence, we study stationary and axisymmetric metrics that could represent the exterior field of spinning black holes. For the standard choice of the background scalar, the modified field equations decouple into the Einstein equations and additional constraints. These constraints eliminate essenti...

متن کامل

Radially excited rotating black holes in Einstein-Maxwell-Chern-Simons theory

Jose Luis Blázquez-Salcedo, Jutta Kunz, Francisco Navarro-Lérida, and Eugen Radu Institut für Physik, Universität Oldenburg Postfach 2503, D-26111 Oldenburg, Germany Departamento de Física Atómica, Molecular y Nuclear, Ciencias Físicas Universidad Complutense de Madrid, E-28040 Madrid, Spain Departamento de Física da Universidade de Aveiro and I3N Campus de Santiago, 3810-183 Aveiro, Portugal (...

متن کامل

Three-dimensional Chern-Simons black holes

We construct black hole solutions to three-dimensional Einstein-Maxwell theory with both gravitational and electromagnetic Chern-Simons terms. These intrinsically rotating solutions are geodesically complete, and causally regular within a certain parameter range. Their mass, angular momentum and entropy are found to satisfy the first law of black hole thermodynamics. These Chern-Simons black ho...

متن کامل

Einstein-Maxwell-Chern-Simons Black Holes

5-dimensional Einstein-Maxwell-Chern-Simons theory with Chern-Simons coefficient λ = 1 has supersymmetric black holes with vanishing horizon angular velocity, but finite angular momentum. Here supersymmetry is associated with a borderline between stability and instability, since for λ > 1 a rotational instability arises, where counterrotating black holes appear, whose horizon rotates in the opp...

متن کامل

Holography with Gravitational Chern-Simons

The holographic description in the presence of gravitational Chern-Simons term is studied. The modified gravitational equations are integrated by using the FeffermanGraham expansion and the holographic stress-energy tensor is identified. The stressenergy tensor has both conformal anomaly and gravitational or, if re-formulated in terms of the zweibein, Lorentz anomaly. We comment on the structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Cosmology and Astroparticle Physics

سال: 2023

ISSN: ['1475-7516', '1475-7508']

DOI: https://doi.org/10.1088/1475-7516/2023/02/033